Operator Splitting for Kdv
نویسنده
چکیده
We apply the method of operator splitting on the generalized Korteweg{de Vries (KdV) equation ut +f(u)x+"uxxx = 0, by solving the nonlinear conservation law ut +f(u)x = 0 and the linear dispersive equation ut + "uxxx = 0 sequentially. We prove that if the approximation obtained by operator splitting converges, then the limit function is a weak solution of the generalized KdV equation. Convergence properties are analyzed numerically by studying the eeect of combining diierent numerical methods for each of the simpliied problems.
منابع مشابه
Operator splitting for the KdV equation
We provide a new analytical approach to operator splitting for equations of the type ut = Au + B(u) where A is a linear operator and B is quadratic. A particular example is the Korteweg–de Vries (KdV) equation ut−uux +uxxx = 0. We show that the Godunov and Strang splitting methods converge with the expected rates if the initial data are sufficiently regular.
متن کاملOperator Splitting for Well-Posed Active Scalar Equations
We analyze operator splitting methods applied to scalar equations with a nonlinear advection operator, and a linear (local or nonlocal) diffusion operator or a linear dispersion operator. The advection velocity is determined from the scalar unknown itself and hence the equations are so-called active scalar equations. Examples are provided by the surface quasi-geostrophic and aggregation equatio...
متن کاملSolution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کاملIntegrable Systems and Riemann Surfaces Lecture Notes (preliminary version)
1 KdV equation and Schrödinger operator 2 1.1 Integrability of Korteweg – de Vries equation . . . . . . . . . . . . . . . . . . 2 1.2 Elements of scattering theory for the Schrödinger operator . . . . . . . . . . . 5 1.3 Inverse scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Dressing operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملA solution of an operator equation related to the KdV equation
For a given nonzero bounded linear operator A on a Banach space X, we show that if A or A∗ has an eigenvalue then, except when the dimension of X is equal to two and the trace of A is zero, there exists a bounded linear operator B on X such that (i) AB + BA is of rank one, and (ii) I + f (A)B is invertible for every function f analytic in a neighborhood of the spectrum of A. This result was mot...
متن کامل